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Abstract

We consider a nonlinearly elastic and prestressed tube subjected to a combined torsion and circular and axial
shearing. The hollow cylinder’s inner and outer surfaces are allowed to rotate by the torsion and the circular shear, and
to displace in the longitudinal direction by the axial shear but not move radially. The analysis is carried out for a class of
Blatz—Ko response augmented with unidirectional reinforcing that is characterized by a single additional constitutive
parameter for strength of reinforcement. The form of solution sought leads to a system of nonlinear equations which
are solved numerically. For different transverse isotropic materials, we show the effects of the prestress on the local
volume change, the circumferential stretch ratio and the stress distributions. © 2001 Elsevier Science Ltd. All rights
reserved.

1. Introduction

In recent years, there has been a considerable amount of interest in the study of finite compressible
elasticity problems. Note that the mathematical formulations for compressible materials is considerably
more complicated than incompressible cases. Indeed, the research on compressible, hyperelastic solids is
relatively new and the scope of these works is more restricted due to the fact that the only controllable
deformations are homogeneous deformations as was proved by Ericksen (1955). To put it more precisely,
Ericksen has shown that the only deformations that can be sustained by every homogeneous, isotropic,
elastic and compressible solid without body force are homogeneous deformations. As a consequence of
these limitations, there are few exact solutions available within the context of compressible nonlinear
constitutive theories in elasticity. Ogden and Isherwood (1978) have presented the solution of some finite
plane-strain problems for compressible, isotropic elastic solids by using a direct method, which does not
employ inverse or semi-inverse technique. Carroll and Horgan (1990) have also proposed several closed
form finite strain equilibrium solutions for the Blatz—Ko constitutive law (Blatz and Ko, 1962; Beatty,
1987).
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The Blatz—Ko model is perhaps the most widely known constitutive model for compressible isotropic
nonlinearly elastic solids. Its mathematical formulation characterizes the constitutive behavior of certain
solid or foam rubber-like materials and was proposed on the basis of experiments carried out by them.
Thus, Carroll and Horgan (1990) obtained solutions by the semi-inverse method, each of the deformations
being a nonisochoric generalization of a deformation which is controllable for homogeneous, isotropic,
incompressible elastic solids. The problems of finite deformations of compressible, isotropic, hyperelastic,
long circular cylindrical tubes subjected to circular or axial shearing force on its outer curved surface have
been extensively studied by various authors (Mioduchowski and Haddow, 1974; Ertepinar and Erarslan-
oglu, 1990; Ertepinar, 1990; Polignone and Horgan, 1992; Simmonds and Warne, 1992; Polignone and
Horgan, 1994; Wineman and Waldron, 1995; Beatty and Jiang, 1995; Beatty and Jiang, 1997; Jiang and
Ogden, 1998; Jiang and Ogden, 2000). Similarly, the torsion of a hyperelastic and isotropic hollow cylinder
subjected to twisting moments at its ends has been a subject of attention (Levinson, 1972; Carroll and
Horgan, 1990; Polignone and Horgan, 1991).

It must be emphasized that few studies include the combined deformations in the compressible case and
the author is unaware of any published exact solution in this situation. Recently, there has been a resur-
gence of interest in determining solutions within the context of specific combined problems which are
complicated to obtain, even in the isotropic case and for simple geometries. In the incompressible case, Tao
et al. (1992) have considered a tube subjected to torsion and azimuthal shearing for generalized power-law
neo-Hookean materials. They have shown that for certain values of the power-law exponent, exact solu-
tions may be found. Mioduchowski and Haddow (1979) have studied a compressible hyperelastic cylinder
subjected to finite circular and axial shear. A numerical solution has been obtained for two strain energy
functions, those proposed by Levinson and Burgess (1971) and by Blatz and Ko (1962). The approximate
solution is discussed in which the cylinder is divided into a number of coaxial thin-walled tubes of equal
undeformed wall thickness. Distributions on the stresses and the radial stretch ratio of the current thickness
to the undeformed wall thickness were obtained. More recently, Zidi (2000a) has discussed the deformation
of a sector of a cylinder of a compressible hyperelastic material using a generalized Blatz—Ko constitutive
equation. First, the deformation is considered which closes the sector, and then it is subjected to azimuthal
shear and torsion. In this combined problem, the three equilibrium equations are transformed into a system
of two ordinary differential equations for radial variation of the circumferential stretch ratio and the local
volume change. Because no closed form solution seems possible, these coupled equations have been solved
numerically. Soon after, using the same approach, the combined torsion and finite axial shear problem for a
hollow cylinder was studied (Zidi, 2000b).

The purpose of the present paper is to extend one of these previous studies (Zidi, 2000a). For one, the
tube is considered transversely isotropic and made of a Blatz—Ko reinforced material (Kurashige, 1981;
Triantaffyllidis and Abeyaratne, 1983; Qiu and Pence, 1997; Zidi, 2000b). Note that the transverse isotropy
considered can be interpreted as unidimensional fibers that are arranged and embedded in an isotropic
matrix, the whole forming an anisotropic material (Spencer, 1984). For another, the tube is considered as
prestressed and to be subjected to a deformation consisting of combined torsion and circular and axial
shearing. Thus, as in previous works (Wineman and Waldron, 1995; Zidi, 2000a,b), the differential equa-
tions governing this new problem are explicitly obtained and solved numerically. As illustrative examples,
we study the effects of different orientations of the fibers and we show clearly that an increase of the
prestress modifies the results, particularly the gradient of the stress distributions in the tube.

2. Preliminaries

Consider a nonlinearly elastic body in its undeformed configuration. With respect to a cartesian coor-
dinate system, let X and x denote, respectively, the position vector of a particle in the undeformed and the
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deformed configuration. The components of the deformation gradient F, the right Cauchy—Green defor-
mation tensor B and the left Cauchy—Green deformation tensor C will be, respectively, denoted by

F=0x/0X, B=FF, C=FF, (1)

where F is the transpose of F.
Suppose that the material of the body is transversely isotropic, i.e. reinforced by “fibers” (Spencer,
1984). The corresponding elastic potential W depends on five strain invariants [y, I, I3, Iy and /5 expressed as

L =tB, L=tB, L=J>=detB, I,=T.CT, I5=T.C-T, 2)

with B* = (detB)B™" is the adjoint of B, J is the local volume change and T = (T;) is the preferential di-
rection vector in the undeformed configuration related to the transverse isotropic direction t = (#;) in the
deformed configuration by

1
t= TEFT. 3)

The corresponding response equation for the Cauchy stress tensor & is
o =21, "L + L)1 + WB — LB ™' + LWt @ t + L,Ws(t @ Bt + tB @ t)], (4)

where 1 is the identity tensor and W, = (0W/ol;) (j =1,2,3,4,5).
Consider now a Blatz-Ko material reinforced in the T direction and take

w="1 {(11 ~3) _g(lgq/2> — 1) k(- 1)"], (5)

where ¢ = (—2vo/1 — 2v), and the scalars g, vy, respectively, are the usual constant shear modulus and
Poisson’s ratio for infinitesimal deformations from the undeformed configuration. The constants k and n
represent, respectively, the density of reinforcement and the fiber stiffness.

Note that the isotropic case k = 0 characterizes the class of solid polyurethane rubbers (Blatz and Ko,
1962; Beatty, 1987) and when I35 — 1 (5) may be viewed as a compressible generalization of the reinforced
neo-Hookean incompressible material (Qiu and Pence, 1997; Zidi et al., 1999).

Egs. (4) and (5) yield the corresponding law expressed as

1 L
o=y, | —JM +jB+kn74(14—1)"_lt®t. (6)

To motivate our particular choice of material defined by Eq. (5), we examine a state of plane-strain uniaxial
stress parallel to the x;-axis, o1y = F, 0pp =0, A3 = 1.

When the fibers are parallel to the direction of loading (i.e. Ty = 1, T, = 0, T3 = 0), it easily follows that
from Egs. (2) and (6) the applied stress F and the transverse stretch 1, are related to the principal stretch
A1 = a as follows:

(1-9) @) 2
T T ot%kn(oc2 )" =0 (7)
Ho
For the purposes of comparison, now consider normal fibers to the direction of loading (i.e.
T1 = O, T2 = 1,T3 = O), we obtain
F 2 7k
e STV [ RN TICEE Vi (8)
Ho e

As an illustration, Fig. 1 shows the stress—stretch relation F versus o for k£ = 2.5, n =2 and the com-

parison with the isotropic case (k = 0). We show clearly that in tension the reinforcement has an effect on
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Fig. 1. Mechanical response of Blatz—Ko reinforced material in plane uniaxial stress. Stress versus stretch.

the mechanical behavior when fibers are aligned with the direction of the loading, whereas it has no effect
when aligned in a direction normal to it. It must be emphasized that these results are comparable to those
presented by Triantafyllidis and Abeyaratne (1983), when the reinforcement of the special Blatz—Ko ma-
terial is considered.

3. Hollow cylinder subjected to combined deformation: formulation of boundary-value problem

We are now concerned with a sector of a circular and hollow cylinder composed of a material described
by Eq. (5). The sector is defined by the angle ®, (Fig. 2). Let us suppose that the tube undergoes two

(R,0,2)
(2)

Fig. 2. Cross-section of the tube in (a) stress-free, (b) unloaded, and (c) loaded configuration.
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successive deformations. First, the cylinder is closed, which induces a prestress (Sensenig, 1965; Zidi,
2000a), and then it is subjected to torsion, circular and axial shear. The mapping is described by

T

r=r(R), 0= <@0>@+¢Z+¢(r), z=7Z+ o(r), 9)

where (R, ©, Z) and (r, 0, z), respectively, are the reference and the deformed positions of a material particle
in a cylindrical coordinate system. Here, i is a twist angle per unloaded length, ¢ is an angle which defines
the circular shear and w is an axial displacement which defines the axial shear. Let R; and r; denote, re-
spectively, the inner surfaces of the cylinder in the reference state and in the deformed state (R, and r, are
the outer surfaces). It follows from Eq. (9) that in terms of physical components, the deformation gradient
F has the following representation in a cylindrical system

P00 e 0 0
F=|ri¢g 235 nh|=|Ki % ry |, (10)
o 0 1 Ky, 0 1

where the dot denotes the differentiation with respect to the argument, K, K5, 4, and Ay, respectively, denote
the circular and the axial shear strains, and the radial and the circumferential stretch ratios.
Thus, the Cauchy—Green deformation tensors have the matrix representation

[} K72 K22
B=| K2 (Kik) + (&) + () KiKad +r |, (11)
| Ky KKy 22 4 i (Kx2)* 41

[+ K+ KD Kkl Kidry + Kol

T Jomy2 AgTC
€=| Kahs (&) 0" : (12)
Ki2prp + Ka Gy (rp)’ +1

As in Section 2, consider a unidirectional reinforcement in the mechanical response of the tube.

Define & = (6/1,), the normalized Cauchy stress tensor and examine a particular constant direction
T = [0, Tp, T]. Thus, from Eq. (3) we have t = [0, ), %], and using Eqgs. (11) and (12), the nondimensional
stress components from the constitutive equation (6) with respect to cylindrical coordinates are found to be

@ 2
G = _Jq_l +J<0) )

igTC
— J(]*l +J @0 2K2 4 1 i(}ﬁ ? +( w)z +kn1 (1 1)n71t2
g, = —, _— —_ _ V4 _ J—
00 /’{()TC 1 J @0 J 4\44 0>
0 \* 1 kn O
G.=-J '+ — )| K+ -+ —LL-1)"¢F
[ + <167T) 2+J+J 4(4 ) -

2 (13)
e
[ J(ﬁ) K,

0, 2 rny  kn nel
G =J | — | KiKo + —+— LI, — 1)" " tyt.,
g0 (xhﬂt) 1 2+J+J W(ls = 1)ty

o) 2
[ :J(_()) KZa
/1()7'[
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with Iy = (To2o(rt/0y)) + T2[(rh)* + 1] + 2To Tyririg(r/ Op).

Furthermore, define 7 = r/R;, R = R/R; and Z = z/R; as nondimensional variables. Then, from Eq. (13),
and upon ignoring the body force field, the equilibrium equations are reduced to

darr Ty — oo
+ -

w0 (14
dErF) 26?‘9
& F ’ (15)
ds. o

=4 Z=0. 1
& t7 =0 (16)

Note that Egs. (15) and (16) can be solved for the circular and axial shear stress distribution

w|51|

_ K _
0 = =5 O,z =
r2

) (17)
where F| and F, are the nondimensional circular and axial shear force per unit length required to maintain
the shear deformation. Then, from Egs. (6) and (17) the expressions for the local shear strains K; and K,

are
Flig T 2 Fz/l(% I 2
K, = _ K, = — . 18
TR \e ) T\ e (18)

Thus, using equation 4, = (J/4y)(0,/m), obtained from the definition of the local volume change, and on
substitution from Eq. (18), the normalized Cauchy stress tensor @ can be written from 7, J and 7y, and the
result is denoted by @. Then, from Eq. (14), we obtain a coupled system of nonlinear ordinary differential
equations for 4y(7) and J(7) which can be written as

dig g o
57(1‘750 : (19)
Y _ (4G G G dia () 20)
7 \ dF oF 0l dF o )
where

ds, 1[2/n\> J[6,\> Ry’ Fii2(=n\> kn,
& % J<@0) }?)(1‘[) + 7 + 74.] <@0> +710[4(1471) ’ (21)
agrr
5 — 0 (22)
G, 2[00\’

e 23
0l P (zg>’ (23)
aﬁi’r
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Let us consider the boundary conditions such as #(R;) = R; and r(R.) = R., which imply
}v()(?i) = \.()(?e) =1, (25)

where 7, = 1 and 7. = R./R;. As a result, Egs. (19) and (20) subject to the boundary conditions (25) form a
boundary value problem for 4(7) and J(7), where F; and F, are fixed. Note that this approach has been
used recently for other boundary value problems in the context of compressible finite elasticity (Wineman
and Waldron, 1995; Zidi, 2000a,b).

On the other hand, we have derived the necessary and sufficient conditions on the strain energy function
(5) for a pure deformation, with particular transverse isotropy directions. For that, pure torsion, pure
circular shear or axial shear (Haughton, 1993; Wineman and Waldron, 1995; Zidi, 2000a) which correspond
to A, =29 =J =1 and ©; = 180° are considered. Furthermore, we consider transverse isotropic direction
as T = [0, Ty, T7] = [0, cosy,, siny,]. Thus, the orientation of fibers is characterized by their tangent vector
which depends on the given constant angle y,.

In this situation, examine the cases y, = 0°, y, = 45° and y, = 90° which correspond, respectively, to
circumferential, oriented at 45°, and axial fibers. For pure torsion (y # 0, F, = F, = 0), it follows from Eq.
(18)

K, =K, =0. (26)

Then, from Egs. (13) and (14) we obtain
n—1
(FRW)* + kn{Tg, + T2[(FR)? + 1] + 2T Ty R — 1} (To + FRYT)? = 0. (27)

Thus, Eq. (27) does not hold verified for the fiber directions considered.
For pure circular shear (F; # 0, F, = = 0), it follows from Eq. (18)

Then, from Egs. (13) and (14) we obtain
B (1) =0 29
}73"‘ n @( ot 17 — ) =Y. (29)

Like the previous case, Eq. (29) does not hold.
For pure axial shear (F| =y =0, F, # 0), it follows from Eq. (18)

K, =0, K, = Q (30)
7
Then, from Egs. (13) and (14) we obtain
nT3(T2+ T2 — 1) =0. (31)

This always holds, for fiber directions considered.

4. Numerical results and discussion

The effects of the prestress described in Section 3 are investigated. Note that the opening angle O, is a
manifestation of the intensity of the prestress inside the tube, a decrease of ®, being related to an increase in
opening angle and intensity of the prestress (Sensenig, 1965; Zidi, 2000a). The variation of the stretch ratio,
the volume ratio and nonzero stress components are presented by solving the nonlinear differential
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equations (19) and (20). These equations are integrated numerically using the fourth order Runge-Kutta
method with 51 points along the radial direction. The numerical method is also completed with an iterative
process as in the paper of Wineman and Waldron (1995). Indeed, first, for given values of F; and F,, J(7;) is
estimated. Using these values and the boundary condition 44(7) = 1, Egs. (19) and (20) are integrated for
7 = [, 7e]. The value of the circumferential stretch ratio was checked against the boundary condition
A9(Fe) = 1. Then, iterations are used to adjust the estimate for J(7;) until the boundary condition 7y(7.) = 1
is satisfied and the stress distributions are obtained. As an illustrative example, we take 7, =2 and
vo = 0.25. We focus our attention on a case, where the torsion is neglected (y = 0) and when the tube is
subjected to fixed circular and axial shear defined by F} = F, = 2.

To begin with, we consider the isotropic case (k = 0). Figs. 3 and 4 show the distribution of circum-
ferential stretch ratio and the volume ratio. For each angle ©, the material element volume is decreased
(J < 1) at the inner support and increases with increasing 7. Near the outer shell, material element volume is
increased (J > 1). At approximately 7 = 1.1, material element volume is unchanged. Since 4y < 1, the cy-
lindrical surfaces move inward, which is consistent with the volume change as shown in Fig. 4. Also, it
follows from Fig. 3 that the circumferential stretch ratio passes through a minimum. This minimum is
smaller as @, is smaller (i.e. the prestress is greater). Clearly, in the outer surface, there is a pronounced
effect on the local volume change when @, decreases. For the purpose of brevity, we have plotted only the
nondimensional stress components G4 and ... We show that an increase of the prestress has limited effects
on the stress distributions in the outer surface (Figs. 5 and 6), while the stresses become significant in the
inner surface. Thus, the stress gradient increases greatly with the prestress and becomes significant for the
circumferential stress distributions (Fig. 5). Note that the results of the isotropic case are identical to those

0,84

hll

Fig. 3. Circumferential stretch ratio vs. radius for different values of ©y (k =0, vp = 0.25and F, = F, = 2).
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Fig. 4. Volume ratio vs. radius for different values of @ (k =0, v =0.25and F, = F, = 2).
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Fig. 5. Circumferential stress vs. radius for different values of ©, (vo =025andF, =F, = 2).
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30
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Fig. 6. Axial stress vs. radius for different values of &y (vo = 0.25and F| = F, = 2).

of the transverse isotropic case with y, = 90° (axial fibers). Indeed, it easily follows from Eqgs. (13) and (21)
that the contribution of the fibers disappears.

For the purposes of comparison, we examine the transverse isotropic case for £k = 2.5 and » = 2 with
T = [0, cosy,, siny,] (Section 3). An interesting example to study is the case y, = 0° (circumferential fibers).
We observe that it is at approximately 7 = 1.2 that the material element volume is unchanged. This is
plotted in Fig. 8. When compared to the isotropic case, it must be emphasized that the material element
volume is all the more unchanged near the inner surface as the angle y, increases.

On the other hand, the specific transverse isotropy mentioned above (y, = 0°) and the prestress con-
tribute to disturb the distribution of J with greater intensities in the outer surface (Fig. 8) like that of the
case k = 0. Note that relative to the isotropic case, the curve of the plots of the local volume change is
different from the inner surface to the outer surface. Indeed, it is worthy of note that the examination of
Fig. 8 shows that the curves are inverted compared to the isotropic case. Furthermore, the maxima are
more important in the outer surface when the prestress increases. Fig. 7 shows the circumferential stretch
distributions which also pass through minima. However, these minima have intensities less significant
compared to the case without fibers.

On the other hand, as shown in Figs. 9 and 10, the stress distributions are comparable to the isotropic
case, but the intensities are greater in the inner surface, which increases the stress gradient. Particularly, the
circumferential stress becomes extremely important in the inner surface when the prestress increases (Fig.
9). Finally, it must be emphasized that at any intermediate orientation of the fibers, one expects the re-
sponse to lie somewhere between these two previous cases (y, = 0° and y, = 90° or isotropic case). Without
going into further details of the parametric study, it is important to point out that the results reported here
do not change significantly when varying the intensity of the shear forces F; and F,.
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Fig. 7. Circumferential stretch ratio vs. radius for different values of @y (y, = 0°, k =2.5,n=2,v=025and F, = F, = 2).
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|

Fig. 8. Volume ratio vs. radius for different values of ©y (y, = 0%, k =2.5,n=2, vy =0.25and F|, =F, = 2).
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Fig. 9. Circumferential stress vs. radius for different values of @y (y, = 0°, k =2.5,n=2,vy=025and F, = F, = 2).
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Fig. 10. Axial stress vs. radius for different values of @ (y, =0°, k=25, n=2,v,=025and F, = F, = 2).
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